

HTTP Signatures PHP library

PHP implementation of Signing HTTP Messages [https://tools.ietf.org/html/draft-cavage-http-signatures-10] draft IETF specification,
allowing cryptographic signing and verifying of
PHP PSR-7 messages [http://www.php-fig.org/psr/psr-7/].

Contents:

	Quickstart
	Signing a message

	Verifying a Signed Message

	Symfony compatibility

	The HTTP Signature
	Signature Line

	Headers

	API Reference
	Class: Context

Usage

Add liamdennehy/http-signatures-php [https://packagist.org/packages/liamdennehy/http-signatures-php]
to your composer.json. Full instructions can be found in Installation

To quickly see how a message is signed, take a look in Signing a message
in the Quickstart guide.

Requirements

	PHP 5.6 (PHP >7.0 recommended)

	Composer for full autoloading of class loading

	Understanding of PSR-7 HTTP message handling

Installation

The recommended way to install http-signatures-php is with
Composer [http://getcomposer.org]. Composer is a dependency management tool
for PHP that allows you to declare the dependencies your project needs and
installs them into your project.

Install Composer
curl -sS https://getcomposer.org/installer | php

You can add http-signatures-php as a dependency using the composer.phar CLI:

php composer.phar require liamdennehy/http-signatures-php

Alternatively, you can specify http-signatures-php as a dependency
in your project’s existing composer.json file:

{
 "require": {
 "liamdennehy/http-signatures-php": "~6.0"
 }
}

After installing, you need to require Composer’s autoloader in your project
to be able to locate the library within PHP:

require __DIR__ . '/vendor/autoload.php';

You can find out more on how to install Composer, configure autoloading, and
other best-practices for defining dependencies at getcomposer.org [http://getcomposer.org].

Contributing

Pull Requests are welcome, as are
issue reports [https://github.com/liamdennehy/http-signatures-php/issues]
if you encounter any problems.

License

HTTP Signatures PHP library is licensed under
The MIT License (MIT) [https://opensource.org/licenses/MIT]

This documentation is licensed under
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) [https://creativecommons.org/licenses/by-sa/4.0/]

Quickstart

This page provides a quick introduction to HTTP Signatures PHP library
and introductory examples.

If you have not already installed HTTP Signatures PHP library head over to the Installation
page.

A reference signing client and verifying server are included that will
actually exchange messages over HTTP. To see the library in actions,
head over the the Reference Implementation Guide in the file REFERENCE.md [https://github.com/liamdennehy/http-signatures-php/blob/6.4.1/REFERENCE.md].

Signing a message

Once you have a PSR-7 message ready to send,
create a Context with:

	your chosen algorithm

	the list of headers to include in the signature

	the key you will use to sign the message

For these examples we will sign the method + URI (indicated by
(request-target) and the Content-Type header. This provides a very
basic level of protection, and you should consider the headers you sign
in your application carefully. These may also be specified by the verifier
(most often a server hosting an API or web service).

Note also that this does not apply only to HTTP requests sent by a client.
Servers can add a signature to responses that the client can verify.

Shared Secret Context (HMAC)

This type of signature uses a secret key known to you and the verifier.

use HttpSignatures\Context;

$context = new HttpSignatures\Context([
 'keys' => ['key12' => 'your-secret-here'],
 'algorithm' => 'hmac-sha256',
 'headers' => ['(request-target)', 'Content-Type'],
]);

Private Key Context (RSA)

This type of signature uses a private key known only to you, which can be
verified using a public key that is known to anyone who wants to verify the
message.

The key file is assumed to be an unencrypted private key in PEM format.

use HttpSignatures\Context;

$context = new Context([
 'keys' => ['key43' => file_get_contents('/path/to/privatekeyfile')],
 'algorithm' => 'rsa-sha256',
 'headers' => ['(request-target)', 'Date', 'Accept'],
]);

Signing the Message:

$context->signer()->sign($message);

Now $message contains the Signature header:

$message->headers->get('Signature');
// keyId="examplekey",algorithm="hmac-sha256",headers="...",signature="..."

Adding a Digest header while signing

Include a Digest header automatically when signing to also protect the
payload (body) of the message in addition to the request-target and headers:

$context->signer()->signWithDigest($message);
$message->headers->get('digest');
// SHA-256=<base64SHA256Digest>

Verifying a Signed Message

Most parameters are derived from the Signature in the signed message, so the
Context can be created with fewer parameters.

It is probably most useful to create a Context with multilpe keys/certificates.
the signature verifier will look up the key using the keyId attribute of the
Signature header and use that to validate the signature.

Verifying a HMAC signed message

A message signed with an hmac signature is verified using the same key as
the one used to sign the original message:

use HttpSignatures\Context;

$context = new HttpSignatures\Context([
 'keys' => ['key300' => 'some-other-secret',
 'key12' => 'secret-here']
]);

$context->verifier()->isSigned($message); // true or false

Verifying a RSA signed message

An RSA signature is verified using the certificate associated with the
Private Key that created the message. Create a context by importing
the X.509 PEM format certificates in place of the ‘secret’:

use HttpSignatures\Context;

$context = new HttpSignatures\Context([
 'keys' => ['key43' => file_get_contents('/path/to/certificate'),
 'key87' => $someOtherCertificate],
$context->verifier()->isSigned($message); // true or false
]);

Verifying a message digest

To confirm the body has a valid digest header and the header is a valid digest
of the message body:

$context->verifier()->isValidDigest($message); // true or false

An all-in-one validation that the signature includes the digest, and the digest
is valid for the message body:

$context->verifier()->isSignedWithDigest($message); // true or false

Symfony compatibility

Symfony requests normalize query strings which means the resulting request target can be incorrect. See https://github.com/symfony/psr-http-message-bridge/pull/30

When creating PSR-7 requests you use withRequestTarget to ensure the request target is correct. For example

use Symfony\Bridge\PsrHttpMessage\Factory\DiactorosFactory;
use Symfony\Component\HttpFoundation\Request;

$symfonyRequest = Request::create('/foo?b=1&a=2');
$psrRequest = (new DiactorosFactory())
 ->createRequest($symfonyRequest)
 ->withRequestTarget($symfonyRequest->getRequestUri());

The HTTP Signature

This section is based on the definitions and descriptions in
Signing HTTP Messages IETF draft RFC version 10 [https://tools.ietf.org/html/draft-cavage-http-signatures-10].

Table of Contents

	Signature Line

	Headers

Signature Line

keyId="abc123",algorithm="rsa-sha256",headers="(request-target) date",signature="base64string"

The Signature line is the component of a signature header that describes the
parameters of how a message was signed as well as the actual digital signature.

These parameters together should provide any verifier with the information
required to prove the validity of a signature against the HTTP message it
accompanies.

The parameters of the Signature Line are described here

keyId

As desribed in the draft RFC [https://tools.ietf.org/html/draft-cavage-http-signatures-10#section-2.1.4],
the keyId parameter is used by the verifier to look up the key that can
be used to verify the provided signature.

	In the HMAC case these are the same key - the shared secret.

	In the RSA or EC case, this is the public component of the key.

Note that the RFC is not specific about the meaning of the parameter’s value.
This could be a fingerprint of the certificate containing the key, the
e-mail address of the signer, or even no value at all if the verifier can
determine which key to use by another means entirely e.g. if the key/certificate
is provided in a dedicated header.

The value of keyId must therefore be agreed before the message is
transmitted - either by agreeing an explicit value, or the format of the
value acceptable to the verifier if it not distinct.
This is typically found in the API documentation for the resource.

algorithm

The algorithm parameter informs the verifier which hash algorithm was used
to generate the hash signed by the signature (“hash” algorithm),
and which cryptographic algorithm was used to sign that resulting hash
(“signature algorithm”).

The hash algorithm cannot be deduced simply by looking at the key and
signature, so must be provided in this parameter.

However the verifier should not rely on the signature algorithm part
of the algorithm parameter alone to determine which signature algorithm to use.
Rather the “metadata” (e.g. which elliptic curve algorithm the key
is designed for) associated with the key should be relied on separate
from the signed message.

This arises as some types of keys can be used in multiple modes, and
selecting the wrong mode for verification may introduce security issues.

In any case the signer and verifier should agree which hash and signature
algorithms are acceptable for a given request/response.

headers

The headers parameter is a space-delimited list of the headers that are
included in the signature itself. These headers are specified in lowercase,
and let the verifier know which order to place the headers in when the
signature is verified - so this order cannot be altered.

The signer and verifier(s) need to agree on which headers should be included
in any signature, especially if there are minimum headers that must be included
and any that are forbidden.

If this parameter is missing from a provided signature line, then the default
value “date” is used to verify the signature.

signature

The signature parameter is simply a base64-encoded string representing
the raw digital signature (which is likely encoded with unprintable characters).

The verifier can use this string, along with the other parameters and headers
in the HTTP message, to verify the contents of the message (specifically the
message’s headers) have not been altered since the signer
generated the signature.

Headers

Authorization header

Authorization: Signature <signatureline>

The Authorization header is described in
RFC 7235#section-4.2 [https://tools.ietf.org/html/rfc7235.html#section-4.2] and provides
a way for a HTTP client to “authenticate itself with an origin server”. This
gives a hint that the header is used almost exclusively by a client
when talking to a server.

The first parameter of an Authorization header is the authorization type,
of which many have been defined. When the type is Signature, the server
will expect the next parameters to be a Signature Line according
to the specifications of
https://tools.ietf.org/html/draft-cavage-http-signatures

Since this header is involved primarily with authenticating a client to a
server, this header is not typically used to protect the content of a
message, and is not useful in a HTTP Response.

Signature header

Signature: <signatureline>

The Signature header is a new HTTP header proposed in
https://tools.ietf.org/html/draft-cavage-http-signatures.

The value of the header is simply the Signature Line.

This header is more versatile than the Authorization header as it can
be used:

	by both the client and server (HTTP request and HTTP respnse respectively)

	to prove the identity of the signer (similar to the Authorization header
in Signature mode

	in addition to an Authorization header when needed

Digest header

Digest: SHA-256=<base64string>

The Digest header is a base64-encoded representation of the hash of
the message payload (aka body). It is defined in RFC 3230 [https://tools.ietf.org/html/rfc3230.html]. Note that this
library has only rudimentary support for this specification e.g. can only
include a single digest value while the RFC requires support for multiple
digests.

Including the Digest header in the
signature’s
signature allows the integrity of the payload to be
included in the signature itself.

When the message has no payload - e.g. a GET request, or a reponse with code
202 - the digest is calculated on the empty string ''.

API Reference

Table of Contents

	Class: Context

Class: Context

new Context($contextArgs)

The Context class is the base of all signing and verification actions.

$contextArgs is an associative array of parameters for the context. The
following keys are recognised:

	Key Name

	Type

	Description

	keys

	Array of keys

	An array of shared secret, public or private key objects

	algorithm

	blah

	blah

	headers

	blah

	blah

Index

 R

R

 	
 	
 RFC

 	RFC 3230

 	RFC 7235#section-4.2

 nav.xhtml

 Table of Contents

 		
 HTTP Signatures PHP library

 		
 Quickstart

 		
 Signing a message

 		
 Shared Secret Context (HMAC)

 		
 Private Key Context (RSA)

 		
 Signing the Message:

 		
 Adding a Digest header while signing

 		
 Verifying a Signed Message

 		
 Verifying a HMAC signed message

 		
 Verifying a RSA signed message

 		
 Verifying a message digest

 		
 Symfony compatibility

 		
 The HTTP Signature

 		
 Signature Line

 		
 keyId

 		
 algorithm

 		
 headers

 		
 signature

 		
 Headers

 		
 Authorization header

 		
 Signature header

 		
 Digest header

 		
 API Reference

 		
 Class: Context

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

