
http-signatures-php Documentation

Liam Dennehy

Aug 05, 2019

Contents:

1 Quickstart 3
1.1 Signing a message . 3
1.2 Verifying a Signed Message . 4
1.3 Symfony compatibility . 5

2 The HTTP Signature 7
2.1 Signature Line . 7
2.2 Headers . 8

3 API Reference 11
3.1 Class: Context . 11

4 Usage 13

5 Requirements 15
5.1 Installation . 15

6 Contributing 17

7 License 19

Index 21

i

ii

http-signatures-php Documentation

PHP implementation of Signing HTTP Messages draft IETF specification, allowing cryptographic signing and verify-
ing of PHP PSR-7 messages.

Contents: 1

https://tools.ietf.org/html/draft-cavage-http-signatures-10
http://www.php-fig.org/psr/psr-7/

http-signatures-php Documentation

2 Contents:

CHAPTER 1

Quickstart

This page provides a quick introduction to HTTP Signatures PHP library and introductory examples.

If you have not already installed HTTP Signatures PHP library head over to the Installation page.

1.1 Signing a message

Once you have a PSR-7 message ready to send, create a Context with:

• your chosen algorithm

• the list of headers to include in the signature

• the key you will use to sign the message

For these examples we will sign the method + URI (indicated by (request-target) and the Content-Type
header. This provides a very basic level of protection, and you should consider the headers you sign in your application
carefully. These may also be specified by the verifier (most often a server hosting an API or web service).

Note also that this does not apply only to HTTP requests sent by a client. Servers can add a signature to responses that
the client can verify.

1.1.1 Shared Secret Context (HMAC)

This type of signature uses a secret key known to you and the verifier.

use HttpSignatures\Context;

$context = new HttpSignatures\Context([
'keys' => ['key12' => 'your-secret-here'],
'algorithm' => 'hmac-sha256',
'headers' => ['(request-target)', 'Content-Type'],

]);

3

http-signatures-php Documentation

1.1.2 Private Key Context (RSA)

This type of signature uses a private key known only to you, which can be verified using a public key that is known to
anyone who wants to verify the message.

The key file is assumed to be an unencrypted private key in PEM format.

use HttpSignatures\Context;

$context = new Context([
'keys' => ['key43' => file_get_contents('/path/to/privatekeyfile')],
'algorithm' => 'rsa-sha256',
'headers' => ['(request-target)', 'Date', 'Accept'],

]);

1.1.3 Signing the Message:

$context->signer()->sign($message);

Now $message contains the Signature header:

$message->headers->get('Signature');
// keyId="examplekey",algorithm="hmac-sha256",headers="...",signature="..."

1.1.4 Adding a Digest header while signing

Include a Digest header automatically when signing to also protect the payload (body) of the message in addition to
the request-target and headers:

$context->signer()->signWithDigest($message);
$message->headers->get('digest');
// SHA-256=<base64SHA256Digest>

1.2 Verifying a Signed Message

Most parameters are derived from the Signature in the signed message, so the Context can be created with fewer
parameters.

It is probably most useful to create a Context with multilpe keys/certificates. the signature verifier will look up the key
using the keyId attribute of the Signature header and use that to validate the signature.

1.2.1 Verifying a HMAC signed message

A message signed with an hmac signature is verified using the same key as the one used to sign the original message:

use HttpSignatures\Context;

$context = new HttpSignatures\Context([
'keys' => ['key300' => 'some-other-secret',

'key12' => 'secret-here']

(continues on next page)

4 Chapter 1. Quickstart

http-signatures-php Documentation

(continued from previous page)

]);

$context->verifier()->isSigned($message); // true or false

1.2.2 Verifying a RSA signed message

An RSA signature is verified using the certificate associated with the Private Key that created the message. Create a
context by importing the X.509 PEM format certificates in place of the ‘secret’:

use HttpSignatures\Context;

$context = new HttpSignatures\Context([
'keys' => ['key43' => file_get_contents('/path/to/certificate'),

'key87' => $someOtherCertificate],
$context->verifier()->isSigned($message); // true or false
]);

1.2.3 Verifying a message digest

To confirm the body has a valid digest header and the header is a valid digest of the message body:

$context->verifier()->isValidDigest($message); // true or false

An all-in-one validation that the signature includes the digest, and the digest is valid for the message body:

$context->verifier()->isSignedWithDigest($message); // true or false

1.3 Symfony compatibility

Symfony requests normalize query strings which means the resulting request target can be incorrect. See https://github.
com/symfony/psr-http-message-bridge/pull/30

When creating PSR-7 requests you use withRequestTarget to ensure the request target is correct. For example

use Symfony\Bridge\PsrHttpMessage\Factory\DiactorosFactory;
use Symfony\Component\HttpFoundation\Request;

$symfonyRequest = Request::create('/foo?b=1&a=2');
$psrRequest = (new DiactorosFactory())

->createRequest($symfonyRequest)
->withRequestTarget($symfonyRequest->getRequestUri());

1.3. Symfony compatibility 5

https://github.com/symfony/psr-http-message-bridge/pull/30
https://github.com/symfony/psr-http-message-bridge/pull/30

http-signatures-php Documentation

6 Chapter 1. Quickstart

CHAPTER 2

The HTTP Signature

This section is based on the definitions and descriptions in Signing HTTP Messages IETF draft RFC version 10.

Table of Contents

• Signature Line

• Headers

2.1 Signature Line

keyId="abc123",algorithm="rsa-sha256",headers="(request-target) date",signature=
→˓"base64string"

The Signature line is the component of a signature header that describes the parameters of how a message was signed
as well as the actual digital signature.

These parameters together should provide any verifier with the information required to prove the validity of a signature
against the HTTP message it accompanies.

The parameters of the Signature Line are described here

2.1.1 keyId

As desribed in the draft RFC, the keyId parameter is used by the verifier to look up the key that can be used to verify
the provided signature.

• In the HMAC case these are the same key - the shared secret.

• In the RSA or EC case, this is the public component of the key.

7

https://tools.ietf.org/html/draft-cavage-http-signatures-10
https://tools.ietf.org/html/draft-cavage-http-signatures-10#section-2.1.4

http-signatures-php Documentation

Note that the RFC is not specific about the meaning of the parameter’s value. This could be a fingerprint of the
certificate containing the key, the e-mail address of the signer, or even no value at all if the verifier can determine
which key to use by another means entirely e.g. if the key/certificate is provided in a dedicated header.

The value of keyId must therefore be agreed before the message is transmitted - either by agreeing an explicit value,
or the format of the value acceptable to the verifier if it not distinct. This is typically found in the API documentation
for the resource.

2.1.2 algorithm

The algorithm parameter informs the verifier which hash algorithm was used to generate the hash signed by the
signature (“hash” algorithm), and which cryptographic algorithm was used to sign that resulting hash (“signature
algorithm”).

The hash algorithm cannot be deduced simply by looking at the key and signature, so must be provided in this param-
eter.

However the verifier should not rely on the signature algorithm part of the algorithm parameter alone to determine
which signature algorithm to use. Rather the “metadata” (e.g. which elliptic curve algorithm the key is designed for)
associated with the key should be relied on separate from the signed message.

This arises as some types of keys can be used in multiple modes, and selecting the wrong mode for verification may
introduce security issues.

In any case the signer and verifier should agree which hash and signature algorithms are acceptable for a given re-
quest/response.

2.1.3 headers

The headers parameter is a space-delimited list of the headers that are included in the signature itself. These headers
are specified in lowercase, and let the verifier know which order to place the headers in when the signature is verified
- so this order cannot be altered.

The signer and verifier(s) need to agree on which headers should be included in any signature, especially if there are
minimum headers that must be included and any that are forbidden.

2.1.4 signature

The signature parameter is simply a base64-encoded string representing the raw digital signature (which is likely
encoded with unprintable characters).

The verifier can use this string, along with the other parameters and headers in the HTTP message, to verify the
contents of the message (specifically the message’s headers) have not been altered since the signer generated the
signature.

2.2 Headers

2.2.1 Authorization header

Authorization: Signature <signatureline>

8 Chapter 2. The HTTP Signature

http-signatures-php Documentation

The Authorization header is described in RFC 7235#section-4.2 and provides a way for a HTTP client to “au-
thenticate itself with an origin server”. This gives a hint that the header is used almost exclusively by a client when
talking to a server.

The first parameter of an Authorization header is the authorization type, of which many have been defined.
When the type is Signature, the server will expect the next parameters to be a Signature Line according to the
specifications of https://tools.ietf.org/html/draft-cavage-http-signatures

Since this header is involved primarily with authenticating a client to a server, this header is not typically used to
protect the content of a message, and is not useful in a HTTP Response.

2.2.2 Signature header

Signature: <signatureline>

The Signature header is a new HTTP header proposed in https://tools.ietf.org/html/draft-cavage-http-signatures.

The value of the header is simply the ref:header-signatureline.

This header is more versatile than the Authorization header as it can be used:

• by both the client and server (HTTP request and HTTP respnse respectively)

• to prove the identity of the signer (similar to the Authorization header in Signature mode

• in addition to an Authorization header when needed

2.2.3 Digest header

Digest: SHA-256=<base64string>

The Digest header is a way to determine the integrity of the payload (aka body) of a HTTP request. Including the
Digest in the signature’s signature allows the integrity of the payload to be included in the signature itself.

2.2. Headers 9

https://tools.ietf.org/html/rfc7235.html#section-4.2
https://tools.ietf.org/html/draft-cavage-http-signatures
https://tools.ietf.org/html/draft-cavage-http-signatures

http-signatures-php Documentation

10 Chapter 2. The HTTP Signature

CHAPTER 3

API Reference

Table of Contents

• Class: Context

3.1 Class: Context

new Context($args)

11

http-signatures-php Documentation

12 Chapter 3. API Reference

CHAPTER 4

Usage

Add liamdennehy/http-signatures-php to your composer.json. Full instructions can be found in Installation

To quickly see how a message is signed, take a look in Signing a message in the Quickstart guide.

13

https://packagist.org/packages/liamdennehy/http-signatures-php

http-signatures-php Documentation

14 Chapter 4. Usage

CHAPTER 5

Requirements

1. PHP 5.6 (PHP >7.0 recommended)

2. Composer for full autoloading of class loading

3. Understanding of PSR-7 HTTP message handling

5.1 Installation

The recommended way to install http-signatures-php is with Composer. Composer is a dependency management tool
for PHP that allows you to declare the dependencies your project needs and installs them into your project.

Install Composer
curl -sS https://getcomposer.org/installer | php

You can add http-signatures-php as a dependency using the composer.phar CLI:

php composer.phar require liamdennehy/http-signatures-php

Alternatively, you can specify http-signatures-php as a dependency in your project’s existing composer.json file:

{
"require": {

"liamdennehy/http-signatures-php": "~6.0"
}

}

After installing, you need to require Composer’s autoloader in your project to be able to locate the library within PHP:

require __DIR__ . '/vendor/autoload.php';

You can find out more on how to install Composer, configure autoloading, and other best-practices for defining depen-
dencies at getcomposer.org.

15

http://getcomposer.org
http://getcomposer.org

http-signatures-php Documentation

16 Chapter 5. Requirements

CHAPTER 6

Contributing

Pull Requests are welcome.

17

http-signatures-php Documentation

18 Chapter 6. Contributing

CHAPTER 7

License

HTTP Signatures PHP library is licensed under The MIT License (MIT)

This documentation is licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

19

https://opensource.org/licenses/MIT
https://creativecommons.org/licenses/by-sa/4.0/

http-signatures-php Documentation

20 Chapter 7. License

Index

R
RFC

RFC 7235#section-4.2, 9

21

	Quickstart
	Signing a message
	Verifying a Signed Message
	Symfony compatibility

	The HTTP Signature
	Signature Line
	Headers

	API Reference
	Class: Context

	Usage
	Requirements
	Installation

	Contributing
	License
	Index

